by Pete Hardin

“Activists’ purely speculative concerns about rBST – ranging from the destruction of small family farms to the risk of cancer – have proven baseless. Before approval by the Food and Drug Administration, rBST underwent the longest and most comprehensive regulatory review of any veterinary product in history. Moreover, before the FDA approved the marketing of milk from supplemented cows, its scientists, in an article published in the journal Science, summarized more than 120 studies showing that rBST poses no risk to human health.”

—Excerpt from an article by Henry I. Miller on the “op-ed” page of The New York Times on June 29, 2007. Miller is identified as “a doctor and fellow at the Hoover Institution, headed the Food and Drug Administration’s Office of Biotechnology from 1989 to 1993. He is co-author, most recently, of "The Frankenfood Myth.”

More and more U.S. dairy processors rejecting rbGH milk

The U.S. dairy industry is witnessing a rush to the exits. More and more dairy processors and food marketers are announcing policies to avoid milk coming from dairy farms where milk cows are injected with Monsanto’s synthetic, milk-stimulating cow hormone drug: Posilac.

[Posilac is the trade name of Monsanto’s patented bovine hormone, known as recombinant bovine growth hormone (rbGH), or, as Monsanto and its allies prefer, recombinant bovine somatotrophin. More on the nomenclature later.]

Dairy’s farm-to-consumer supply chain is being jerked hard by perceived consumer desires to avoid milk products from rbGH-injected dairy cows. Huge, national vendors have declared “rbGH-free” intentions. Dairy farmers, raw milk marketers, and processors now face major national food firms changing milk buying practices, due to fast-growing consumer resistance. Pure and simple: consumers don’t want their milk supplies sourced from dairy herds where the cows are poked with Monsanto’s needle.

Recently, two major national food vendors have announced they will convert to "rbGH-free" milk supplies in early 2008: the Kroger Company (with thousands of supermarkets nationwide), and Starbucks (the ubiquitous high-end coffee emporium).

What’s behind the furor in the dairy market place that’s propelling “rbGH-free” dairy demand? Why is this issue literally “boiling over” thirteen and a half years after Monsanto first started marketing this FDA-approved veterinary drug to dairy farmers? What are the bases for human health/safety concerns?

Writer’s note: For more than 20 years, as a journalist and activist, I have been immersed in the most controversial food safety battle in this nation’s history: biotech-produced bovine growth hormone injections to boost cows’ milk output. Monsanto—the global corporate food biotech giant—produces and markets that drug under the tradename “Posilac.” The biotech hormone’s trade name, along with the fact that the drug is delivered by a hypodermic needle, are perhaps the only points of agreement between proponents and opponents in this epic food safety battle.

Throughout this decades-long, food safety battle, this nation’s consumers’ inherent skepticism about injecting U.S. dairy cows with powerful, synthetic growth hormones to boost daily milk flow stands as wise testament to the public milk supply, was a red flag. So in the late 1980s, Monsanto renamed the product “recombinant bovine somatotrophin,” or “rbST.” (Note: All milk contains various naturally occurring hormones.) In this report, Posilac will be referred to as “rbGH”—except when directly quoting citations that use other references to Monsanto’s dia-

FDA’s long-ago “human safety” precepts for Monsanto’s biotech cow growth hormone appear defective.

FDA’s long-ago rbGH human safety precepts were faulty

The central thesis of this report is that the FDA’s basic rbGH human safety presumptions are faulty. Rather than perform the legally mandated rule as the overseer of the sale of veterinary drugs and the nation’s food supply, FDA employees have served as “pom-pom girls”—cheering on the approval and marketing of this powerful synthetic hormone drug.

Failed oversight of human and veterinary drugs has, unfortunately, become “business as usual” at FDA. Publicly declared “at all-time low” failures repeated revelations of inaccurate safety-testing of drugs by the agency. Let’s summarize some of the “worst of the worst” failures in FDA’s human safety oversight for Monsanto’s rbGH:

* No mandatory residue assay required. FDA specifically violated its own rules by failing to require Monsanto to develop a mandatory residue test for drug residues in the milk and meat of treated dairy cows. Failure to require a rbGH residue detection test—which would be necessary to roughly 1989—has brought broad implications even today. There is no test to verify the accuracy of dairy processors’ claims milk labeled “rbGH-Free” is in fact from dairy herds that have not been injected with Posilac.

Without a residue assay, the myth, indeed the fabrication, that milk from rbGH-injected cows is “the same” as normal cows’ milk is perpetuated. Specifically, FDA’s rules mandate that the developer of an “investigative new animal drug” must create a test to measure for drug residues, before any products from animals receiving the research drug may be used in the human food chain. But FDA never required that test for rbGH. Rather, based on limited rat-feeding tests, in 1987, FDA officials approved human consumption of milk/meat from rbGH-treated cows in experiments conducted at Monsanto’s research facility in Missouri, at many university dairy herds, and numerous private dairy farms.

Lack of a mandatory, drug residue test has created the most problematic headache for the dairy industry: no test to verify claims by an increasing number of firms (like Kroger and Starbucks) that their products are “rbGH-free.”

Thus, when Monsanto (proudly) claimed, a decade and a half years after rbGH was introduced into the market, that milk from rbGH-treated cows is “the same” as normal cows’ milk, as far as actual drug residues goes, that claim must be considered without scientific substantiation.

*1990 Science article on rbGH “human safety”—flawed

The above-cited quotation from Henry I. Miller in the June 29, 2007 issue of The New York Times is instructive. Miller headed FDA’s Office of Biotechnology from 1989 to 1993—a key period when FDA was finalizing its rbGH human safety review. Miller refers to FDA-written article that appeared in the journal Science on August 24, 1990, as “...a summation of more than 120 studies showing that rBST poses no risk to human health.”

Science graced its pages with a ten-page article titled, “Bovine Growth Hormone: Human Food Safety Evaluation.” This article represented a response to the white-hot public safety issue for FDA. Never before had the agency addressed human safety concerns of an animal drug still under review. Commercial sale of rbGH was still three and a half years into the future.

Miller’s recent assertions, to the benefit of rbGH critics, show that Monsanto, FDA and the supporters of rbGH truly have “nothing new to say” in the past 17 years, except to regurgitate the standard party line, “rbGH is safe because FDA says it’s safe.”

When scrutinized in detail, that long-ago article in Science—FDA’s “all clear” prognosis for human safety issues—falls miserably in efforts to assure human safety concerns regarding rbGH. Here’s why:

FDA’s Science article cited, as proof of “human safety” of the biotech-derived cow hormone, research conducted many years earlier, in which human dwarfs were injected with natural cow growth hormones. FDA noted that the dwarfs did not grow, in response to receiving the injections, which were extract-

FDA’s central thesis of this report is that the FDA’s basic rbGH human safety presumptions are faulty. Rather than perform the legally mandated rule as the overseer of the sale of veterinary drugs and the nation’s food supply, FDA employees have served as “pom-pom girls”—cheering on the approval and marketing of this powerful synthetic hormone drug.

Failed oversight of human and veterinary drugs has, unfortunately, become “business as usual” at FDA. Publicly declared “at all-time low” failures repeated revelations of inaccurate safety-testing of drugs by the agency. Let’s summarize some of the “worst of the worst” failures in FDA’s human safety oversight for Monsanto’s rbGH:

* No mandatory residue assay required. FDA specifically violated its own rules by failing to require Monsanto to develop a mandatory residue test for drug residues in the milk and meat of treated dairy cows. Failure to require a rbGH residue detection test—which would be necessary to...

More and more U.S. dairy processors rejecting rbGH milk

The U.S. dairy industry is witnessing a rush to the exits. More and more dairy processors and food marketers are announcing policies to avoid milk coming from dairy farms where milk cows are injected with Monsanto’s synthetic, milk-stimulating cow hormone drug: Posilac.

[Posilac is the trade name of Monsanto’s patented bovine hormone, known as recombinant bovine growth hormone (rbGH), or, as Monsanto and its allies prefer, recombinant bovine somatotrophin. More on the nomenclature later.]

Dairy’s farm-to-consumer supply chain is being jerked hard by perceived consumer desires to avoid milk products from rbGH-injected dairy cows. Huge, national vendors have declared “rbGH-free” intentions. Dairy farmers, raw milk marketers, and processors now face major national food firms changing milk buying practices, due to fast-growing consumer resistance. Pure and simple: consumers don’t want their milk supplies sourced from dairy herds where the cows are poked with Monsanto’s needle.

Recently, two major national food vendors have announced they will convert to “rbGH-free” milk supplies in early 2008: the Kroger Company (with thousands of supermarkets nationwide), and Starbucks (the ubiquitous high-end coffee emporium).

What’s behind the furor in the dairy market place that’s propelling “rbGH-free” dairy demand? Why is this issue literally “boiling over” thirteen and a half years after Monsanto first started marketing this FDA-approved veterinary drug to dairy farmers? What are the bases for human health/safety concerns?

Writer’s note: For more than 20 years, as a journalist and activist, I have been immersed in the most controversial food safety battle in this nation’s history: biotech-produced bovine growth hormone injections to boost cows’ milk output. Monsanto—the global corporate food biotech giant—produces and markets that drug under the tradename “Posilac.” The biotech hormone’s trade name, along with the fact that the drug is delivered by a hypodermic needle, are perhaps the only points of agreement between proponents and opponents in this epic food safety battle.

Throughout this decades-long, food safety battle, this nation’s consumers’ inherent skepticism about injecting U.S. dairy cows with powerful, synthetic growth hormones to boost daily milk flow stands as wise testament to the public milk supply, was a red flag. So in the late 1980s, Monsanto renamed the product “recombinant bovine somatotrophin,” or “rbST.” (Note: All milk contains various naturally occurring hormones.) In this report, Posilac will be referred to as “rbGH”—except when directly quoting citations that use other references to Monsanto’s...

FDA cites a study which demonstrated that commercial pasteuriza-
tion temperatures break down cow growth hormones in milk from rbGH-treated dairy cows.

That research citation was attributed in the Science article to Gervais Gobeil and others. Truth is: This seemingly prestigious researcher, Gervone-

gen, was at that time an undergraduate student at the University of Guelph in Ontario, Canada. The pasteurization study attributed to him actu-
ally involved processing very few cows for a feeding trial involving calves. Worse yet: Gervonegen’s research dramatically “overcooked” the batches of milk.

Instead of pasteurizing his batches of raw milk at the standard, 15-second time, Gervonegen pasteurized that milk for 25-30 minutes—100-120 times longer than recommended treatment.

[Editor’s note: Credit for unveiling digging out these unsavory details of FDA’s rbGH approval process goes to Robert Cohen, a resident of Oradell, New Jersey. Cohen’s curiosity about rbGH was first sparked by the thought of his daughters drinking rbGH milk in their school. Cohen, perhaps more than any other, spent years of experimentation and research into rbGH’s safety. He studied every scientific document cited by FDA in the Science article. Cohen even brought a pro se lawsuit against FDA, when the agency denied him access to research documents used in the rbGH approval. (He lost.) Cohen’s search for answers are detailed in a unorthodox book: “Milk—The Deadly Poison.” Cohen is a vegan.]

-A major portion of FDA’s Science article attempted to rebut concerns about Insulin-like Growth Factor-1 (IGF-1). IGF-1 is a secondary hormone produced by mammals in response to levels of natural (and synthetic) growth hor-
mones. IGF-1 circulates to the milk duct tissues, where a tremendous concentration of IGF-1 is accumulated in milk appears to exist.

FDA’s Science article acknowledges that IGF-1 is not destroyed by normal pasteurization. Indeed, FDA admitted in the Science article that if cow’s milk-
sourced IGF-1 entered the human blood stream, the IGF-1 would be active in humans.

FDA’s statement, taken back in 1990, that IGF-1 in milk is destroyed by human stomach acids, is one of the agency’s shakiest cornerstones of logic in FDA’s mistaken notion that stomach acids denature milk-borne IGF-1.

IGF-1 is structurally identical in both cows and humans. Injections of rbGH dramatically boost the IGF-1 content in cows’ milk. But FDA scientists argued in the prior article, that digestive acids in the human gut would break down any IGF-1 consumed through milk. Subsequent research has widely discounted FDA’s claim that gastric acid destroys IGF-1 in milk.

FDA’s stance, taken back in 1990, that IGF-1 in milk is destroyed by human stomach acids, is one of the agency’s shakiest cornerstones of logic in the rbGH “safety” fray. In 1995, the Journal of Endocrinology cited work by researchers in Australia who demonstrated that milk proteins protect IGF-1 from digestion. The footnotes from this particular work cited studies published prior to 1990 with similar conclusions.

What’s the significance? IGF-1 is one of the leading suspects involved in the development and spread of cancers. Many thousands of articles reporting in scientific and medical journals have explored the possible relationships between IGF-1 and human cancer development and growth.

In the rbGH human safety debate, IGF-1, is far and away, the key issue.

rbGH “lead-off batter” for vast array of food biotech products

Unfortunately for the best interests of the U.S. dairy industry, the biotech cow growth hormone drug was the first major research and commercial applica-
tion of genetic modification in the food industry. Commercializing food biotech-
nologies have resulted in aggregate investments of at least $1 billion, or hundreds of millions of dollars invested in the development process … with FDA conspiring in the process to bring these research projects to commercial fruition and profit.

Why did Monsanto (and other companies) decide to initially replicate bovine growth hormone? From the late 1940s into the mid-1960s, bovine growth hormone research was a hot research topic. Scientists tinkered with some of the rudiments of life. But high costs of obtaining samples (from dead mammals’ pituitary glands), coupled with poor quality of those samples, ultimately put that research into permanent mothballs.

Monsanto scientists added a methionine marker to the DNA sequence, which presumably increases the potency of the product. Originally, four biotech firms attempted to develop patented cow growth hormone drugs. Besides Monsanto, Eli Lilly, American Cyanamid and Upjohn entered the rbGH sweepstakes.

Monsanto’s rbGH product replicates dairy cow growth hormone, but Mons-

tanto scientists used a different marker to the DNA sequence, which presumably increases the potency of the product. Originally, four biotech firms attempted to develop patented cow growth hormone drugs. Besides Monsanto, Eli Lilly, American Cyanamid and Upjohn entered the rbGH sweepstakes.

Monsanto changed the name: “hormone” out! Initial consumer reaction to rbGH was decidedly negative. Much of that negative reaction was due to a pronounceable word that has significant signifi-
cance of U.S. consumers held serious fears about the use of synthetic hormones in the production of their foods. Why did U.S. consumers react negatively to early news about rbGH?...Back in the 1940s, the FDA had approved a steroid hormone—Diethyl-

ylstibestrol (DES)—as a growth promoter for livestock in the U.S. DES was also approved as a human drug—a fertility enhancer for women. That use became a

separate debacle. But in 1979, the FDA banned DES as an animal growth promoter. Studies of laboratory test animals indicated DES was a serious carcinogen.

U.S. drug companies were stuck with carry-over inventories of DES ani-
mal drugs. Rather than take a loss destroying those inventories, manufacturers ‘dumped’ products on farmers in less developed countries, promising that DES would help livestock and poultry grow faster. The DES-related human health debacle in Puerto Rico helped hone skepticism in the U.S. about synthetic hor-
mones in the food supply.

Starting in the late 1940s, FDA approved DES as a fertility enhancer for women. But in the 1960s and 1970s, medical researchers linked mothers having taken DES to horrid cancers in the reproductive glands of both female and male off-
spring. Even worse, as time evolved, it became clear that DES treatments passed on similar cancers even to the grandchildren— of women who’d received the drug.

DES helped steel attitudes for many consumers in the 1980s, when Mon-
santo began tout the wonders of synthetic growth hormones injections for boosting cows’ milk volume. As consumer opinions reflected serious discomfort about use of rbGH, Monsanto changed the name from recombinant bovine growth hormone (rbGH) to recombinant bovine somatotropin (rbST).

Samuel S. Epstein, M.D.—warned of IGF-1 & cancers

The first rbGH critic with solid medical credentials to emerge with dire warnings of potential human health dangers, including cancers, was Samuel S. Epstein, M.D.—world-class environmental toxicologist from the University of Illinois-Chicago. Epstein enjoyed an long-standing, adversarial relationship with Monsanto.

Epstein’s warnings about potential human health problems and rbGH cir-
culated widely in scientific journal articles, op-ed columns written for newspa-
ters, and testimony before a state legislative hearing in Wisconsin. Epstein’s warnings focused on potential cancer-causing amounts of a second-
ary hormone, Insulin-like Growth Factor-1 (IGF-1). Back in the late 1980s, scientific understanding of IGF-1’s function was in its relative infancy.

Here’s one sample of Epstein’s numerous IGF-1/cancer warnings—an op-
ed article to The Los Angeles Times printed on March 20, 1994—in which he warned, in part:

“IGF-1 induces rapid division and multiplication of normal human breast epithelial cells in tissue cultures. “It is highly likely that IGF-1 promotes transformation of normal breast epithelium to breast cancer. “IGF-1 maintains the malignancy of human breast-cancer cells, including their invasiveness and ability to spread to distant organs.”

rbGH “biggest human health issue in FDA’s history”

In December 1986, the National Dairy Board (a promotion entity paid for by dairy farmers’ moneys) received a report from Fine, Travis and Associates that detailed a communications strategy to try to counter widespread public fears about “hormones in their milk.” That report recommended, in part:

“The Solution

“Concern, as well as attack, lies in the assumption that the milk ingested is somehow different from non-bST milk. Communications should be concen-
trated in persuading the consumer, through credible authorities, that milk from rbGH treated cows is no different from milk from non-bST cows.”

Fine, Travis recommended avoiding technical details of rbGH.

In early 1990, the National Dairy Board commissioned a study of consumer attitudes about rbGH. The results were shocking: the word “hormone” was a scar-

MCs/red flag, with a significant number of consumers interviewed stating that they would reduce milk consumption, if rbGH use became common on dairy farms.

Here’s a summary of consumer concerns determined by that study:

“Negative reactions to BST are based primarily upon concern about its safety and the feeling that it is not natural.

“While consumers are willing to accept that BST is naturally found in milk, most do not believe that milk from cows treated with BST is just like milk from untreated cows.

“The majority of respondents feel that:

“…the long run health implications of BST aren’t known (84%)...

“…Milk from cows treated with BST may be harmful to humans (62%)

“…Respondents do not feel that milk from cows treated with BST is completely safe (59%).

Continued on page C
The leadership of any normal, food-marketing industry, upon learning that 84% of its consumers had safety reservations about a new technology, would not have repeated the mantra: “rbGH milk is safe because FDA says it’s safe.” Repeating that mantra continues to the present day. Monsanto, and all their biotech allies have simply repeated the mantra: “rbGH milk is safe.” The synthetic cow growth hormone was deemed safe for humans drinking milk from rbGH-injected dairy cows … and since that time, FDA, Monsanto and all the biotech industry’s food marketers and processors.

On August 24, 1990, FDA’s long-awaited, unprecedented article detailing the human safety considerations for rbGH was printed in the journal Science. “Bovine Growth Hormone: Human Food Safety Evaluation” was co-authored by Judith C. Juskevich and C. Greg Guyer. Co-author Juskevich (she had written the majority of the manuscript) received a $20,000 check from Monsanto for her work. John Bailer, a Monsanto spokesman, stated: “rfGH milk is safe.”

In summary: the FDA article which appeared in the Science issue of August 24, 1990 stands as the Rock of Gibraltar for all presumptions of human safety. The synthetic cow growth hormone was deemed safe for humans drinking milk from rbGH-injected dairy cows … and since that time, FDA, Monsanto and all their biotech allies have simply repeated the mantra: “rbGH milk is safe because FDA says it’s safe.” Repeating that mantra continues to the present day. Monsanto, and all their biotech allies have simply repeated the mantra: “rbGH milk is safe.” The synthetic cow growth hormone was deemed safe for humans drinking milk from rbGH-injected dairy cows … and since that time, FDA, Monsanto and all their biotech allies have simply repeated the mantra: “rbGH milk is safe because FDA says it’s safe.” Repeating that mantra continues to the present day. Monsanto, and all their biotech allies have simply repeated the mantra: “rbGH milk is safe because FDA says it’s safe.” Repeating that mantra continues to the present day.

Fast-forwarding through the years … 1990 to present

This report is not a book. It is impossible in this limited space to detail all the major events in this human safety controversy that has spanned more than two decades. Let’s fast-forward through key events from mid-1990 to the present ...

1992: FDA ruled that biotech variants of foods were “the same” as their natural counterparts and needed no special human safety testing. That policy was engineered by a White House task force, headed by then-Vice President Dan Quayle. Quayle—the newspaper publisher-turned U.S. Senator-turned Vice President—couldn’t even spell the word “biotechnology.” But his task force, aimed at boosting the nation’s economic competitiveness, determined that biotech foods were the same as natural foods. FDA followed suit.

Continued on page D
that have a single gene inserted from Brazil nuts! This event proved that and, thus, safe for human consumption.

the original contentions that rbGH milk was the same as “normal” cows’ milk that were advertising their products as “rbGH-Free.”

“no difference” between milk from rbGH-injected cows and normal cow’s milk.

Monsanto also announced selective lawsuits against two milk processors that were advertising their products as “rbGH-Free.”

February 4, 1994: Monsanto began selling Posilac to U.S. dairy farmers. Milk production in some regions of the country, such as Texas, skyrocketed.

February 10, 1994: Monsanto growth hormone researcher, Dr. Bernard Violand, submitted an article to Protein Science, titled “Isolation of Escherichia coli synthesized recombinant proteins that contain e-N-acetyllysine.” That article, published in July 1994, detailed how unrecognized additional amino acid sequences had occurred in both recombinant bovine and porcine growth hormones manufactured by his firm. Questions should have been raised about whether the biotech hormone Monsanto had just started selling was in fact identical to rbGH that had been “safety tested” by the company. What’s a single amino acid sequence change worth? Persons suffering from “sickle cell anemia” have a genetic variant of but a single amino acid sequence difference.

Violand’s revelation about unintended consequences in genetic engineering opened a Pandora’s Box. In recent years, some scientists have become highly critical of the overzealousness of gene technologists due to the realization that splicing a single gene (or two) into a DNA sequence is not an isolated event. Other, unforeseen changes, are also being documented.

1995: The Journal of Reproductive Medicine [1995]: 146. Pages 215-225 reported an article written by Australian researchers titled, “Degradation of IGF-1 in the adult rat gastrointestinal tract is limited by a specific antisem or the dietary protein casein.” WOW! Just as rbGH-critic Robert Cohen had theorized earlier, presence of casein (a milk protein) protects IGF-1 as it courses through the gut to the bloodstream. This research unveiled the fallacy of FDA’s presumption that milk-borne IGF-1 would be destroyed by stomach acids. Much similar research has followed, replicating findings that IGF-1 passes through the human gut into the bloodstream.

March 1996: The New York Times reported that scientists are shocked to learn that persons with allergies to nuts are affected when fed biotech soybeans that have a single gene inserted from Brazil nuts! This event proved that biotech-derived foods are NOT the same as their natural counterparts!

STOP! ENOUGH! During the next ten years, the rbGH issue always smoldered, and sometimes flared. FDA and Monsanto steadfastly held true to the original contentions that rbGH milk was the same as “dormant” cows’ milk and, thus, safe for human consumption.

May 2006: Research links rbGH/higher human “twinning”

In the May 2006 issue of The Journal of Reproductive Medicine, an obstetrician at the Albert Einstein College of Medicine in New York City, Dr. Gary Steinman, published an article that theorized higher rates of human “twinning” (multiple births) in the U.S. were due to higher levels of IGF-1 in cows’ milk. According to a report of Dr. Steinman’s research in The New York Times that appeared on May 30, 2006, “Eating dairy products increases blood levels of insulinlike growth factor, or IGF, and it is this increased hormone level that is associated with increased rates of multiple ovulation.”

So, Steinman questioned his own findings, stating to that newspaper: “Since this is the first time diet has been implicated in an important role for determining twinning rate, it must be confirmed by others before rigid recommendations can be made concerning health care.”

“The more I.G.F., the more the ovary is stimulated to release additional eggs at ovulation.”

The NYT continued: “All cow’s milk has bovine growth hormone in it, naturally produced by the animal’s pituitary gland. Many dairy farmers inject their cattle with recombinant bovine somatomatotropin, a synthetic version of the naturally occurring hormone. This increases size and milk production, but it has another effect: cows with higher growth hormone levels produce more twins.”

FDA and Monsanto, in tandem with the U.S. dairy industry, have basically ignored the potential impact of Dr. Steinman’s report. Steinman contrasted human “twinning” in the U.S. with rates of multiple births in the United Kingdom—where no rbGH use is allowed. U.S. rates are higher.

FDA said there’s an “equivocal” parallel to Steinman’s research suggesting rbGH-derived hormones in the public milk supply may be responsible for increased rates of human “twinning” in the U.S. One of the side-effects upon dairy cows receiving Posilac injections is a dramatic increase in the number of twin calves produced. However, the physiological mechanisms at work for bovines and humans may be different.)

August 2006: rbGH tied to increased breast cancers in U.S.

In August 2006, The Milkweed published an article by writer Paris Redhead, titled: “Milk Duct Tissue Cancers Rose 55.3% in U.S. Following rbGH Approval.” Redhead utilized annual data on milk duct tissue cancers in post-menopausal woman, ages 50 and older, in the U.S., tracking the annual figures in a bar graph that also delineated when rbGH commercial use started in this country.

The details are contained in the headline: a rapid rise in milk duct tissue cancers in post menopausal women in the U.S. spiked dramatically in the four years following FDA’s approval of rbGH commercial sale and use. A chart of those milk duct tissue cancers is reprinted here.

In December 2000, FDA landed itself in a legal situation caused financial losses for Monsanto, and dairy cows receiving Posilac injections is a dramatic increase in the number of twin calves produced. However, the marketplace is showing greater wisdom than FDA says it’s safe.” And those “safety” claims owe their foundation to the misunderstandings of FDA’s words of “safety.” The march of time, science, and consumer attitudes have all coalesced to force a market-place rejection of rbGH.

And the best FDA and Monsanto can do is reiterate: “rbGH is safe because FDA says it’s safe.” And those “safety” claims owe their foundation to the mis-taken perception that that milk and dairy products are “rbGH-free,” the claims must be taken on faith.

Faith? After an array of food and drug safety scandals that have plagued the FDA for decades, there is little public credence to when a product is blessed with rbGH’s words of “safety.” The march of time, science, and consumer attitudes have all coalesced to force a market-place rejection of rbGH.

The irony of the rbGH human health fray, now more than 20 years running, is that the gut-level instincts of U.S. consumers and the warnings of potential cancer dangers from a limited number of critics . . . now appear more valid than ever before.

Over the past several years, concerns about the quality and safety of foods containing rbGH have compelled many U.S. consumers to ask deeper questions about how and where their food products—including milk—are produced and processed. Once such questioning begins, it logically only increases. The U.S. dairy industry is now being torn, as dairy processors are increasingly rejecting milk from rbGH-treated dairy herds. But without actual tests to prove claims that milk and dairy products are “rbGH-free,” the claims must be taken on faith.

FDA approved commercial sale of Monsanto’s rbGH, with back sales of Posilac by 50% to dairy farmer customers. What happened?

STOP! ENOUGH!

The New York Times continued: “Milk Duct Tissue Cancers Rose 55.3% in U.S. Following rbGH Approval.” Redhead utilized annual data on milk duct tissue cancers in post-menopausal woman, ages 50 and older, in the U.S., tracking the annual figures in a bar graph that also delineated when rbGH commercial use started in this country.

The details are contained in the headline: a rapid rise in milk duct tissue cancers in post menopausal women in the U.S. spiked dramatically in the four years following FDA’s approval of rbGH commercial sale and use. A chart of those milk duct tissue cancers is reprinted here.

In December 2000, FDA landed itself in a legal situation caused financial losses for Monsanto, and dairy cows receiving Posilac injections is a dramatic increase in the number of twin calves produced. However, the marketplace is showing greater wisdom than FDA says it’s safe.” And those “safety” claims owe their foundation to the misunderstandings of FDA’s words of “safety.” The march of time, science, and consumer attitudes have all coalesced to force a market-place rejection of rbGH.

And the best FDA and Monsanto can do is reiterate: “rbGH is safe because FDA says it’s safe.” And those “safety” claims owe their foundation to the mis-taken perception that that milk and dairy products are “rbGH-free,” the claims must be taken on faith.

Faith? After an array of food and drug safety scandals that have plagued the FDA for decades, there is little public credence to when a product is blessed with rbGH’s words of “safety.” The march of time, science, and consumer attitudes have all coalesced to force a market-place rejection of rbGH.

The irony of the rbGH human health fray, now more than 20 years running, is that the gut-level instincts of U.S. consumers and the warnings of potential cancer dangers from a limited number of critics . . . now appear more valid than ever before.

Over the past several years, concerns about the quality and safety of foods containing rbGH have compelled many U.S. consumers to ask deeper questions about how and where their food products—including milk—are produced and processed. Once such questioning begins, it logically only increases. The U.S. dairy industry is now being torn, as dairy processors are increasingly rejecting milk from rbGH-treated dairy herds. But without actual tests to prove claims that milk and dairy products are “rbGH-free,” the claims must be taken on faith.

Faith? After an array of food and drug safety scandals that have plagued the FDA for decades, there is little public credence to when a product is blessed with rbGH’s words of “safety.” The march of time, science, and consumer attitudes have all coalesced to force a market-place rejection of rbGH.

And the best FDA and Monsanto can do is reiterate: “rbGH is safe because FDA says it’s safe.” And those “safety” claims owe their foundation to the mis-taken perception that that milk and dairy products are “rbGH-free,” the claims must be taken on faith.

Faith? After an array of food and drug safety scandals that have plagued the FDA for decades, there is little public credence to when a product is blessed with rbGH’s words of “safety.” The march of time, science, and consumer attitudes have all coalesced to force a market-place rejection of rbGH.

The irony of the rbGH human health fray, now more than 20 years running, is that the gut-level instincts of U.S. consumers and the warnings of potential cancer dangers from a limited number of critics . . . now appear more valid than ever before.

Over the past several years, concerns about the quality and safety of foods containing rbGH have compelled many U.S. consumers to ask deeper questions about how and where their food products—including milk—are produced and processed. Once such questioning begins, it logically only increases. The U.S. dairy industry is now being torn, as dairy processors are increasingly rejecting milk from rbGH-treated dairy herds. But without actual tests to prove claims that milk and dairy products are “rbGH-free,” the claims must be taken on faith.

Faith? After an array of food and drug safety scandals that have plagued the FDA for decades, there is little public credence to when a product is blessed with rbGH’s words of “safety.” The march of time, science, and consumer attitudes have all coalesced to force a market-place rejection of rbGH.

And the best FDA and Monsanto can do is reiterate: “rbGH is safe because FDA says it’s safe.” And those “safety” claims owe their foundation to the mis-taken perception that that milk and dairy products are “rbGH-free,” the claims must be taken on faith.

Faith? After an array of food and drug safety scandals that have plagued the FDA for decades, there is little public credence to when a product is blessed with rbGH’s words of “safety.” The march of time, science, and consumer attitudes have all coalesced to force a market-place rejection of rbGH.